Activation of the extracellular signal-regulated kinase pathway is differentially required for TCR-stimulated production of six cytokines in primary T lymphocytes.

نویسندگان

  • M Egerton
  • D R Fitzpatrick
  • A Kelso
چکیده

The extracellular signal-regulated kinase (ERK) signaling pathway is strongly activated in response to TCR stimulation in normal T cells. However, the extent to which activation of the ERK pathway is necessary for TCR-stimulated cytokine production is not clear. We have addressed this question by use of two separate methods to interfere with TCR activation of the ERK cascade. The first approach utilized transient expression of a catalytically inactive form of mitogen-activated/ERK 1 (CI-MEK1), while the second involved using the MEK1- and MEK2-specific inhibitor PD98059 to block ERK activation by the TCR. In order to assess the requirement for ERK activation in T cell cytokine production, we have measured the effect of ERK inhibition upon the production of six cytokines, IL-3, IL-4, IL-5, IL-10, granulocyte macrophage colony stimulating factor (GM-CSF) and IFN-gamma, by newly activated normal mouse T cells in response to TCR stimulation. The results of experiments using both methods to block ERK activation have revealed a requirement for intact ERK signaling for the full elicitation of TCR-stimulated cytokine production. Dose-response analyses using the MEK inhibitor PD98059 showed that the TCR-stimulated production of all cytokines measured was affected by this treatment. However, the production of IL-3 and IL-4 was only partially dependent upon ERK activation, whereas IL-5, IL-10, IFN-gamma and GM-CSF production was severely affected by diminished ERK activation. We conclude that the ERK pathway is differentially involved in the activation of different cytokine genes in normal T cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

T-cell receptor early signalling complex activation in response to interferon-α receptor stimulation

Signalling through the IFNalphaR (interferon-alpha receptor) and TCR (T-cell receptor) in Jurkat T lymphocytes results in distinct immune responses. Despite this both receptors elicit ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) phosphorylation. Vav and Slp76 are shown to be required for IFNalpha (interferon-alpha)-stimulated ERK activity. These form a sub...

متن کامل

p21ras couples the T cell antigen receptor to extracellular signal- regulated kinase 2 in T lymphocytes

It has previously been shown in T cells that stimulation of protein kinase C (PKC) or the T cell antigen receptor (TCR) induces the rapid accumulation of the active guanosine triphosphate-bound form of p21ras. These stimuli also induce the activation of extracellular signal-regulated kinase 2 (ERK2), a serine/threonine kinase that is rapidly activated via a kinase cascade in response to a varie...

متن کامل

B-Raf contributes to sustained extracellular signal-regulated kinase activation associated with interleukin-2 production stimulated through the T cell receptor.

A T cell receptor (TCR) recognizes and responds to an antigenic peptide in the context of major histocompatibility complex-encoded molecules. This provokes T cells to produce interleukin-2 (IL-2) through extracellular signal-regulated kinase (ERK) activation. We investigated the roles of B-Raf in TCR-mediated IL-2 production coupled with ERK activation in the Jurkat human T cell line. We found ...

متن کامل

Negative regulation of mTOR activation by diacylglycerol kinases.

The engagement of TCR induces T-cell activation, which initiates multiple characteristic changes such as increase in cell size, cell division, and the production of cytokines and other effector molecules. The mammalian target of rapamycin (mTOR) regulates protein synthesis, transcription, cell survival, and autophagy. Critical roles of mTOR in T-cell activation and effector/memory differentiati...

متن کامل

Cutting edge: extracellular signal-regulated kinases 1/2 function as integrators of TCR signal strength.

Altered signaling through the TCR is currently showing promise for immunotherapy. However, the molecular mechanisms are not completely understood. Therefore, we investigated whether varying the strength of TCR engagement in various human T cells would yield different second messenger responses. The kinetics and duration of extracellular signal-regulated kinase (ERK) activation, central to multi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International immunology

دوره 10 2  شماره 

صفحات  -

تاریخ انتشار 1998